

Date Planned :/_/_ Actual Date of Attempt :/_/_				Daily 1	Daily Tutorial Sheet - 3 JEE Main (Archive)			Expected Duration : 90 Min Exact Duration :		
				JEE /						
31.	In which of the following pairs the two species are not isostructural?									
	(A)	CO_3^{2-} and NO_3^-			(B)	PCl ₄ and SiC	Ω_4			
	(C)	PF_4 and BrF_5			(D)	${\rm AlF}_6^{3-}$ and ${\rm Sl}$				
32.	Stabili	ty of the species	$\mathrm{Li}_2,\mathrm{Li}_2^-$ a	and Li ₂ increase	Li ₂ ⁺ increases in the order of:				(2013)	
	(A)	$\mathrm{Li}_2 < \mathrm{Li}_2^+ < \mathrm{Li}_2^-$	(B)	$Li_2^- < Li_2^+ < Li_2$	(C)	$\mathrm{Li}_2 < \mathrm{Li}_2^- < \mathrm{Li}$	⁺ ₂ (D)	$\operatorname{Li}_2^- < \operatorname{Li}_2 < \operatorname{Li}$	$\frac{1}{2}$	
33.	In which of the following pairs of molecules/ions both the species are not likely to exist?								(2013)	
	(A)	$\mathrm{H}_{2}^{+},\mathrm{He}_{2}^{2-}$	(B)	H_2^-, He_2^{2-}	(C)	$\mathrm{H}_2^{2+},\mathrm{He}_2$	(D)	${ m H_2^-},{ m He_2^{2+}}$		
34.	The co	rrect statement f	or the mo	olecule, CsI ₃ is:					(2014)	
	(A)	(A) it is a covalent molecule				it contains Cs ⁺ and I ₃ ⁻ ions				
	(C)	it contains Cs ³⁺ and I⁻ions				it contains Cs^+ , I^- and lattice I_2 molecule				
35.	(C) it contains Cs ³⁺ and I ⁻ ions (D) it contains Cs ⁺ , I ⁻ and lattice I ₂ mole The intermolecular interaction that is dependent on the inverse cube of distance between the is:									
	(A)	ion-ion interaction			(B)	ion-dipole interaction			, ,	
	(C)	London force	(D)	hydrogen bond						
36.	The geometry of XeOF_4 by VSEPR theory is :								(2015)	
	(A) trigonal bipyramidal				(B)	square pyramidal				
	(C)					pentagonal p				
37.	Molecu	Molecule AB has a bond length of $1.617 $								
	atom (absolute magnitu	ıde) is : ($e_0 = 4.802 \times 10^{-3}$	$4.802 \times 10^{-10} \text{esu}$				(2015)	
	(A)	0	(B)	0.05	(C)	0.5	(D)	1.0		
38.	The sp	he species in which the N atom is in a state of sp hybridization is:							(2016)	
	(A)	NO_2^-	(B)	NO_3^-	(C)	NO_2	(D)	NO_2^+		
39 .	After u	ınderstanding the	e assertic	on and reason, o	choose t	the correct option	n.		(2016)	
		tion: In the b	onding n	nolecular orbita	al (MO)	of H ₂ , electror	n density	is increased b	etween the	
	nuclei Reaso	n : The bonding	MO is Ψ	$Y_A + \Psi_{B'}$ which	shows	destructive into	erference	of the combining	ng electron	
	waves.									
	 (A) Assertion and reason are correct, and reason is the correct explanation for the assertion. (B) Assertion and reason are correct, but reason is not the correct explanation for the assertion. (C) Assertion is correct, reason is incorrect. 									
									a doll.	
	(D)	Assertion is inc								
40.	Choos	e the incorrect fo	rmula ou	t of the four co	mpound	l for an element	X below	:	(2016)	

(A)

 $\rm X_2Cl_3$

(B)

 $\mathbf{X_2O_3}$

 $X_2(SO_4)_3$

(D)

- 41. The group of molecules having identical shape is: (2016)
 - (A) $\mathrm{SF}_4,\,\mathrm{XeF}_4,\,\mathrm{CCl}_4$

 $\operatorname{ClF}_3,\operatorname{XeOF}_2,\operatorname{XeF}_3^+$ **(B)**

BF₃, PCl₃, XeO₃ (C)

- (D) $\mathrm{PCl}_5,\,\mathrm{IF}_5,\,\mathrm{XeO}_2\mathrm{F}_2$
- **42**. The bond angle $\,H-X-H\,$ is the greatest in the compound:

(2016)

- (A) CH_4
- (B) NH_3
- (C) H_2O
- (D) PH_3

(D)

43. Which of the following species is not paramagnetic? (2017)

(A) **(B)** NO (C)

 O_2

44. The group having isoelectronic species is: (2017)

 O^-, F^-, Na^+, Mg^{2+}

 $O^{2-}, F^-, Na^+, Mg^{2+}$ **(B)**

CO

(C) O^-, F^-, Na, Mg^+

- $\mathrm{O}^{2-},\mathrm{F}^-,\mathrm{Na},\mathrm{Mg}^{2+}$ (D)
- **45**. Which of the following is paramagnetic?

(2017)

- (A) NO^+
- **(B)** CO
- O_2^{2-} (C)

109

(D) ${\rm B}_2$